Joint cross-domain classification and subspace learning for unsupervised adaptation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint cross-domain classification and subspace learning for unsupervised adaptation

Domain adaptation aims at adapting the knowledge acquired on a source domain to a new different but related target domain. Several approaches have been proposed for classification tasks in the unsupervised scenario, where no labeled target data are available. Most of the attention has been dedicated to searching a new domain-invariant representation, leaving the definition of the prediction fun...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Subspace Distribution Alignment for Unsupervised Domain Adaptation

We propose a novel method for unsupervised domain adaptation. Traditional machine learning algorithms often fail to generalize to new input distributions, causing reduced accuracy. Domain adaptation attempts to compensate for the performance degradation by transferring and adapting source knowledge to target domain. Existing unsupervised methods project domains into a lower-dimensional space an...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Graph and Subspace Learning for Domain Adaptation

Graph and Subspace Learning for Domain Adaptation by Le Shu Doctor of Philosophy in Computer and Information Sciences Temple University in Philadelphia, October, 2015 Researcher Advisor: Longin Jan Latecki In many practical problems, given that the instances in the training and test may be drawn from different distributions, traditional supervised learning can not achieve good performance on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2015

ISSN: 0167-8655

DOI: 10.1016/j.patrec.2015.07.009