Joint modeling of recurrent events and survival: a Bayesian non-parametric approach
نویسندگان
چکیده
منابع مشابه
Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملNon-parametric Bayesian modeling of complex networks
Modeling structure in complex networks using Bayesian non-parametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This paper provides a gentle introduction to non-parametric Bayesian modeling of complex networks: Using an infinite mixture model as running example we go through the steps of deriving the model as an infini...
متن کاملA Hybrid Parametric, Non-parametric Approach to Bayesian Target Tracking
This article describes a versatile approach to non-linear, non-Gaussian noise target tracking which makes use of both parametric and non-parametric techniques within a Bayesian framework. It produces a Gaussian mixture model (GMM) of a track, but resorts to a sampling technique within the tracking process to handle non-linearity. GMMs are recovered from samples using the expectation-maximisatio...
متن کاملMultivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data
Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...
متن کاملBinary Classifier Calibration: Bayesian Non-Parametric Approach
A set of probabilistic predictions is well calibrated if the events that are predicted to occur with probability p do in fact occur about p fraction of the time. Well calibrated predictions are particularly important when machine learning models are used in decision analysis. This paper presents two new non-parametric methods for calibrating outputs of binary classification models: a method bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biostatistics
سال: 2018
ISSN: 1465-4644,1468-4357
DOI: 10.1093/biostatistics/kxy026