Joint one‐sided synthetic unpaired image translation and segmentation for colorectal cancer prevention

نویسندگان

چکیده

Deep learning has shown excellent performance in analysing medical images. However, datasets are difficult to obtain due privacy issues, standardization problems, and lack of annotations. We address these problems by producing realistic synthetic images using a combination 3D technologies generative adversarial networks. propose CUT-seg, joint training where segmentation model jointly trained produce while segment polyps. take advantage recent one-sided translation models because they use significantly less memory, allowing us add the loop. CUT-seg performs better, is computationally expensive, requires real than other memory-intensive image approaches that require two stage training. Promising results achieved on five polyp only one zero As part this study we release Synth-Colon, an entirely dataset includes 20,000 colon additional details about depth geometry: https://enric1994.github.io/synth-colon

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colorectal Cancer and Prevention

   سرطان کولون و رکتوم یکی از انواع شایع - سابقه ابتلا به سرطان کولورکتال یا پولیپ های سرطانهاست که با وجود ایجاد مشکلات و عوارض متعدد در سلامتی انسانها، هنوز به طور جدی و کافی مورد توجه قرار نگرفته است. به طوریکه در سال ۲۰۰۴ بیش از ۱۳۰ هزار مورد جدید ابتلا به این بیماری در امریکا گزارش شده است. و طبق آمارهای انجمن سرطان آمریکا در سال ۲۰۰۲، از ۱۸۳۳۰۰ مورد ابتلا به سرطان کولورکتال۵۶ هزار مورد ب...

متن کامل

Joint segmentation and image interpretation

Interpreting images is a diicult task to automate. Image interpretation essentially consists of both low level and high level vision tasks. In this paper, we develop a joint scheme for segmentation and image interpretation in a multiresolution framework, where seg-mentation (low level) and interpretation (high level) in-terleave. The idea being that the interpretation block should be able to gu...

متن کامل

Joint Kernel Learning for Supervised Image Segmentation

This paper considers a supervised image segmentation algorithm based on joint-kernelized structured prediction. In the proposed algorithm, correlation clustering over a superpixel graph is conducted using a non-linear discriminant function, where the parameters are learned by a kernelized-structured support vector machine (SSVM). For an input superpixel image, correlation clustering is used to ...

متن کامل

Pharmacological Prevention of Colorectal Cancer COLORECTAL CANCER

Colorectal cancer (CRC) is a prevalent cause of morbidity and mortality in the western world. CRC carcinogenesis is a multi-step process that spans over many years providing an opportunity for intervention and cancer prevention. Science and technology have evolved to a point where we are able to use our knowledge of cancer biology to identify individuals at risk and interrupt the process of mal...

متن کامل

Probabilistic Joint Image Segmentation and Labeling

We present a joint image segmentation and labeling model (JSL) which, given a bag of figure-ground segment hypotheses extracted at multiple image locations and scales, constructs a joint probability distribution over both the compatible image interpretations (tilings or image segmentations) composed from those segments, and over their labeling into categories. The process of drawing samples fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems

سال: 2022

ISSN: ['0266-4720', '1468-0394']

DOI: https://doi.org/10.1111/exsy.13137