Justification of multidimensional single phase semilinear geometric optics
نویسندگان
چکیده
منابع مشابه
Institute for Mathematical Physics Semilinear Geometric Optics for Generalized Solutions Semilinear Geometric Optics for Generalized Solutions
This paper is devoted to the study of nonlinear geometric optics in Colombeau algebras of generalized functions in the case of Cauchy problems for semilinear hyperbolic systems in one space variable. Extending classical results, we establish a generalized variant of nonlinear geometric optics. As an application, a nonlinear superposition principle is obtained when distributional initial data ar...
متن کاملSemilinear Geometric Optics for Generalized Solutions
This paper is devoted to the study of nonlinear geometric optics in Colombeau algebras of generalized functions in the case of Cauchy problems for semilinear hyperbolic systems in one space variable. Extending classical results, we establish a generalized variant of nonlinear geometric optics. As an application, a nonlinear superposition principle is obtained when distributional initial data ar...
متن کاملApplications of Geometric Phase in Optics
In the last fifteen years several manifestations of geometric phase in optics have been discovered. The most studied manifestations are spin redirection phase and Pancharatnam phase. A new phase on the transformations of optical beam modes has begun to be studied. This article reviews the principles of these phases and discusses the applications that have been proposed and reported in the liter...
متن کاملFully controllable adiabatic geometric phase in nonlinear optics.
We propose and analyze a new way for obtaining an adiabatic geometric phase for light, via the sum-frequency-generation nonlinear process. The state of light is represented by the complex amplitudes at two different optical frequencies, coupled by the second order nonlinearity of the medium. The dynamics of this system is then shown to be equivalent to that of a spin-1/2 particle in a magnetic ...
متن کاملValidity of Nonlinear Geometric Optics for Entropy Solutions of Multidimensional Scalar Conservation Laws
Nonlinear geometric optics with various frequencies for entropy solutions only in L∞ of multidimensional scalar conservation laws is analyzed. A new approach to validate nonlinear geometric optics is developed via entropy dissipation through scaling, compactness, homogenization, and L–stability. New multidimensional features are recognized, especially including nonlinear propagations of oscilla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1992
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1992-1073774-7