Knowledge Graph Embedding Based Collaborative Filtering
نویسندگان
چکیده
منابع مشابه
Collaborative Filtering with Graph-based Implicit Feedback
Introducing consumed items as users’ implicit feedback in matrix factorization (MF) method, SVD++ is one of the most effective collaborative filtering methods for personalized recommender systems. Though powerful, SVD++ has two limitations: (i). only user-side implicit feedback is utilized, whereas item-side implicit feedback, which can also enrich item representations, is not leveraged; (ii). ...
متن کاملSemantically Smooth Knowledge Graph Embedding
This paper considers the problem of embedding Knowledge Graphs (KGs) consisting of entities and relations into lowdimensional vector spaces. Most of the existing methods perform this task based solely on observed facts. The only requirement is that the learned embeddings should be compatible within each individual fact. In this paper, aiming at further discovering the intrinsic geometric struct...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملContext-Dependent Knowledge Graph Embedding
We consider the problem of embedding knowledge graphs (KGs) into continuous vector spaces. Existing methods can only deal with explicit relationships within each triple, i.e., local connectivity patterns, but cannot handle implicit relationships across different triples, i.e., contextual connectivity patterns. This paper proposes context-dependent KG embedding, a twostage scheme that takes into...
متن کاملGAKE: Graph Aware Knowledge Embedding
Knowledge embedding, which projects triples in a given knowledge base to d-dimensional vectors, has attracted considerable research efforts recently. Most existing approaches treat the given knowledge base as a set of triplets, each of whose representation is then learned separately. However, as a fact, triples are connected and depend on each other. In this paper, we propose a graph aware know...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3011105