Koszul cycles and Golod rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Koszul Cycles

We prove regularity bounds for Koszul cycles holding for every ideal of dimension ≤ 1 in a polynomial ring; see Theorem 3.5. In Theorem 4.7 we generalize the “c + 1” lower bound for the Green–Lazarsfeld index of Veronese rings proved in (Bruns et al., arXiv:0902.2431) to the multihomogeneous setting. For the Koszul complex of the c-th power of the maximal ideal in a Koszul ring we prove that th...

متن کامل

K2 Factors of Koszul Algebras and Applications to Face Rings

Generalizing the notion of a Koszul algebra, a graded kalgebra A is K2 if its Yoneda algebra ExtA(k, k) is generated as an algebra in cohomology degrees 1 and 2. We prove a strong theorem about K2 factor algebras of Koszul algebras and use that theorem to show the Stanley-Reisner face ring of a simplicial complex ∆ is K2 whenever the Alexander dual simplicial complex ∆∗ is (sequentially) Cohen-...

متن کامل

On a Residue Representation of Deformation, Koszul and Chiral Rings

A residue-theoretic representation is given for massless matter fields in (quotients) of (weighted) Calabi-Yau complete intersection models and the corresponding chiral operators in Landau-Ginzburg orbifolds. The well known polynomial deformations are thus generalized and the universal but somewhat abstract Koszul computations acquire a concrete realization and a general but more heuristic rein...

متن کامل

On cycles in intersection graphs of rings

‎Let $R$ be a commutative ring with non-zero identity. ‎We describe all $C_3$‎- ‎and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. ‎Also, ‎we shall describe all complete, ‎regular and $n$-claw-free intersection graphs. ‎Finally, ‎we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...

متن کامل

Rationality for Generic Toric Rings

We study generic toric rings. We prove that they are Golod rings, so the Poincaré series of the residue field is rational. We classify when such a ring is Koszul, and compute its rate. Also resolutions related to the initial ideal of the toric ideal with respect to reverse lexicographic order are described.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: manuscripta mathematica

سال: 2018

ISSN: 0025-2611,1432-1785

DOI: 10.1007/s00229-017-0997-5