KV2.1 K+ Channels Underlie Major Voltage-Gated K+ Outward Current in H9c2 Myoblasts.
نویسندگان
چکیده
منابع مشابه
KV2.1 K+ channels underlie major voltage-gated K+ outward current in H9c2 myoblasts.
The H9c2 clonal cell line derived from embryonic rat ventricle is an in vitro model system for cardiac and skeletal myocytes. We used the whole-cell patch clamp technique to characterize the electrophysiological and pharmacological properties of an outward K+ current (IK(V)) and determined its molecular correlate in H9c2 myoblasts. IK(V) was activated by threshold depolarization to -30 mV, and ...
متن کاملVoltage-gated outward K currents in frog saccular hair cells.
A biophysical analysis of the voltage-gated K (Kv) currents of frog saccular hair cells enzymatically isolated with bacterial protease VIII was carried out, and their contribution to the cell electrical response was addressed by a modeling approach. Based on steady-state and kinetic properties of inactivation, two distinct Kv currents were found: a fast inactivating IA and a delayed rectifier I...
متن کاملInactivation of voltage-gated cardiac K+ channels.
Inactivation is the process by which an open channel enters a stable nonconducting conformation after a depolarizing change in membrane potential. Inactivation is a widespread property of many different types of voltage-gated ion channels. Recent advances in the molecular biology of K+ channels have elucidated two mechanistically distinct types of inactivation, N-type and C-type. N-type inactiv...
متن کاملOutward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage vi...
متن کاملMolecular heterogeneity of the voltage-gated fast transient outward K+ current, I(Af), in mammalian neurons.
Recently, we identified four kinetically distinct voltage-gated K(+) currents, I(Af), I(As), I(K), and I(SS), in rat superior cervical ganglion (SCG) neurons and demonstrated that I(Af) and I(As) are differentially expressed in type I (I(Af), I(K), I(SS)), type II (I(Af), I(As), I(K), I(SS)), and type III (I(K), I(SS)) SCG cells. In addition, we reported that I(Af) is eliminated in most ( appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Japanese Journal of Physiology
سال: 2002
ISSN: 0021-521X
DOI: 10.2170/jjphysiol.52.507