Lagrange Interpolation Based at the Zeros of Orthonormal Polynomials with Freud Weights
نویسندگان
چکیده
منابع مشابه
Orthonormal polynomials for generalized Freud-type weights and higher-order Hermite-Feje'r interpolation polynomials
Let Q : R-R be even, nonnegative and continuous, Q0 be continuous, Q040 in ð0;NÞ; and let Q00 be continuous in ð0;NÞ: Furthermore, Q satisfies further conditions. We consider a certain generalized Freud-type weight W 2 rQðxÞ 1⁄4 jxj 2r expð 2QðxÞÞ: In previous paper (J. Approx. Theory 121 (2003) 13) we studied the properties of orthonormal polynomials fPnðW 2 rQ; xÞg N n1⁄40 with the generalize...
متن کاملDerivatives of Orthonormal Polynomials and Coefficients of Hermite-Fejér Interpolation Polynomials with Exponential-Type Weights
Let R −∞,∞ , and let Q ∈ C2 : R → 0,∞ be an even function. In this paper, we consider the exponential-type weights wρ x |x| exp −Q x , ρ > −1/2, x ∈ R, and the orthonormal polynomials pn w2 ρ;x of degree n with respect to wρ x . So, we obtain a certain differential equation of higher order with respect to pn w2 ρ;x and we estimate the higher-order derivatives of pn w2 ρ;x and the coefficients o...
متن کاملStieltjes polynomials and Lagrange interpolation
Bounds are proved for the Stieltjes polynomial En+1, and lower bounds are proved for the distances of consecutive zeros of the Stieltjes polynomials and the Legendre polynomials Pn. This sharpens a known interlacing result of Szegö. As a byproduct, bounds are obtained for the Geronimus polynomials Gn. Applying these results, convergence theorems are proved for the Lagrange interpolation process...
متن کاملFull Quadrature Sums for Generalized Polynomials with Freud Weights
Generalized nonnegative polynomials are defined as products of nonnegative polynomials raised to positive real powers. The generalized degree can be defined in a natural way. In this paper we extend quadrature sums involving pth powers of polynomials to those for generalized polynomials.
متن کاملPointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights
For a general class of exponential weights on the line and on (−1, 1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near ±∞ (Freud weights), even weights of faster than smooth polynomial decay near ±∞ (Erdős weights) and even weights which vanish strongly near ±1, for example Pollaczek type weights. 1991...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1998
ISSN: 0021-9045
DOI: 10.1006/jath.1997.3114