Laplace operators on differential forms over configuration spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Differential Operators on the Configuration Spaces

Γ = { γ ⊂ R ∣∣ |γΛ| < +∞ for any compact Λ ⊂ Rd}, where | · | means the cardinality of a set and γΛ = γ ∩ Λ. Let us define the σ-algebra B (Γ) as the minimal σ-algebra such that all mappings Γ γ −→ |γΛ| are B(Γ)-measurable for any Λ ∈ Bc(R), where Bc(R) is the family of all Borel subsets of Rd with compact closure. The space Γ can be naturally embedded into the space M(Rd) of all measures on Rd...

متن کامل

Differential operators on equivariant vector bundles over symmetric spaces

Generalizing the algebra of motion-invariant differential operators on a symmetric space we study invariant operators on equivariant vector bundles. We show that the eigenequation is equivalent to the corresponding eigenequation with respect to the larger algebra of all invariant operators. We compute the possible eigencharacters and show that for invariant integral operators the eigencharacter...

متن کامل

Differential Forms on Noncommutative Spaces

This paper is intended as an introduction to noncommutative geometry for readers with some knowledge of abstract algebra and differential geometry. We show how to extend the theory of differential forms to the “noncommutative spaces” studied in noncommutative geometry. We formulate and prove the Hochschild-Kostant-Rosenberg theorem and an extension of this result involving the Connes differential.

متن کامل

The Resolvent for Laplace-type Operators on Asymptotically Conic Spaces

Let X be a compact manifold with boundary, and g a scattering metric on X, which may be either of short range or ‘gravitational’ long range type. Thus, g gives X the geometric structure of a complete manifold with an asymptotically conic end. Let H be an operator of the form H = ∆ + P , where ∆ is the Laplacian with respect to g and P is a self-adjoint first order scattering differential operat...

متن کامل

Differential operators on Hilbert modular forms

We investigate differential operators and their compatibility with subgroups of SL2(R) n. In particular, we construct Rankin–Cohen brackets for Hilbert modular forms, and more generally, multilinear differential operators on the space of Hilbert modular forms. As an application, we explicitly determine the Rankin– Cohen bracket of a Hilbert–Eisenstein series and an arbitrary Hilbert modular for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2001

ISSN: 0393-0440

DOI: 10.1016/s0393-0440(00)00031-0