Large Deviation Principle for Fractional Brownian Motion with Respect to Capacity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic calculus with respect to fractional Brownian motion

— Fractional Brownian motion (fBm) is a centered selfsimilar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1/2, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô...

متن کامل

Stochastic integration with respect to the fractional Brownian motion

We develop a stochastic calculus for the fractional Brownian motion with Hurst parameter H > 2 using the techniques of the Malliavin calclulus. We establish estimates in Lp, maximal inequalities and a continuity criterion for the stochastic integral. Finally, we derive an Itô’s formula for integral processes.

متن کامل

A Large Deviation Principle for a Brownian Immigration Particle System

We derive a large deviation principle for a Brownian immigration branching particle system, where the immigration is governed by a Poisson randommeasurewith a Lebesgue intensity measure.

متن کامل

A Large Deviation Principle for Martingales over Brownian Filtration

In this article we establish a large deviation principle for the family {ν ε : ε ∈ (0, 1)} of distributions of the scaled stochastic processes {P − log √ ε Z t } t≤1 , where (Z t) t∈[0,1] is a square-integrable martingale over Brownian filtration and (P t) t≥0 is the Ornstein-Uhlenbeck semigroup. The rate function is identified as well in terms of the Wiener-Itô chaos decomposition of the termi...

متن کامل

The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6

Let B be a fractional Brownian motion with Hurst parameter H = 1/6. It is known that the symmetric Stratonovich-style Riemann sums for ∫ g(B(s)) dB(s) do not, in general, converge in probability. We show, however, that they do converge in law in the Skorohod space of càdlàg functions. Moreover, we show that the resulting stochastic integral satisfies a change of variable formula with a correcti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2020

ISSN: 0926-2601,1572-929X

DOI: 10.1007/s11118-020-09844-6