Large Deviation Principle for the Two-dimensional Stochastic Navier-Stokes Equations with Anisotropic Viscosity
نویسندگان
چکیده
In this paper we establish the large deviation principle for two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity both small noise and short time. The proof is based on weak convergence approach. For time asymptotics use exponential equivalence to prove result.
منابع مشابه
Two-dimensional Stochastic Navier-stokes Equations with Fractional Brownian Noise
We study the perturbation of the two-dimensional stochastic Navier-Stokes equation by a Hilbert-space-valued fractional Brownian noise. Each Hilbert component is a scalar fractional Brownian noise in time, with a common Hurst parameter H and a specific intensity. Because the noise is additive, simple Wiener-type integrals are suffi cient for properly defining the problem. It is resolved by sepa...
متن کاملInviscid Large deviation principle and the 2D Navier Stokes equations with a free boundary condition
Using a weak convergence approach, we prove a LPD for the solution of 2D stochastic Navier Stokes equations when the viscosity converges to 0 and the noise intensity is multiplied by the square root of the viscosity. Unlike previous results on LDP for hydrodynamical models, the weak convergence is proven by tightness properties of the distribution of the solution in appropriate functional spaces.
متن کاملStochastic Navier-stokes Equations
1. Stochastic Integration on Hilbert spaces 2 1.1. Gaussian measures on Hilbert spaces 2 1.2. Wiener processes on Hilbert spaces 6 1.3. Martingales on Banach spaces 7 1.4. Stochastic integration 8 1.5. Appendix: Stochastic integration w.r.t. cylindrical Wiener processes 12 2. Stochastic Di erential Equations on Hilbert spaces 13 2.1. Mild, weak and strong solutions 13 2.2. Existence and uniquen...
متن کاملAnisotropic Grid Adaptation for Navier-stokes’ Equations
Navier-Stokes’ equations are discretized in space by a finite volume method. Error equations are derived which are approximately satisfied by the errors in the solution. The dependence of the solution errors on the discretization errors is analyzed in certain flow cases. The grid is adapted based on the estimated discretization errors. The refinement and coarsening of the grid are anisotropic i...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematicae Applicatae Sinica
سال: 2023
ISSN: ['0168-9673', '1618-3932']
DOI: https://doi.org/10.1007/s10255-023-1071-6