Large sets of resolvable idempotent Latin squares

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Existence of N2 Resolvable Latin Squares

An N2 resolvable latin squares is a latin square with no 2×2 subsquares that also has an orthogonal mate. In this paper we show that N2 resolvable latin squares exist for all orders n with n 6= 2, 4, 6, 8

متن کامل

Maximal sets of mutually orthogonal Latin squares

Maximal sets of s mutually orthogonal Latin squares of order v are constructed for in nitely many new pairs (s; v). c © 1999 Published by Elsevier Science B.V. All rights reserved

متن کامل

Latin squares and their defining sets

A Latin square L(n, k) is a square of order n with its entries colored with k colors so that all the entries in a row or column have different colors. Let d(L(n, k)) be the minimal number of colored entries of an n × n square such that there is a unique way of coloring of the yet uncolored entries in order to obtain a Latin square L(n, k). In this paper we discuss the properties of d(L(n, k)) f...

متن کامل

More greedy defining sets in Latin squares

A Greedy Defining Set is a set of entries in a Latin Square with the property that when the square is systematically filled in with a greedy algorithm, the greedy algorithm succeeds. Let g(n) be the smallest defining set for any Latin Square of order n. We give theorems on the upper bounds of gn and a table listing upper bounds of gn for small values of n. For a circulant Latin square, we find ...

متن کامل

Weak critical sets in cyclic Latin squares

We identify a weak critical set in each cyclic latin square of order greater than 5. This provides the first example of an infinite family of weak critical sets. The proof uses several constructions for latin interchanges which are generalisations of those introduced by Donovan and Cooper.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2011

ISSN: 0012-365X

DOI: 10.1016/j.disc.2010.09.011