Lattice Boltzmann simulation of rarefied gas flows in microchannels
نویسندگان
چکیده
منابع مشابه
Lattice Boltzmann simulation of rarefied gas flows in microchannels.
For gas flows in microchannels, slip motion at the solid surface can occur even if the Mach number is negligibly small. Since the Knudsen number of the gas flow in a long microchannel can vary widely and the Navier-Stokes equations are not valid for Knudsen numbers beyond 0.1, an alternative method that can be applicable to continuum, slip and transition flow regimes is highly desirable. The la...
متن کاملLattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels.
This paper presents the numerical results of electro-osmotic flows in micro- and nanofluidics using a lattice Poisson-Boltzmann method (LPBM) which combines a potential evolution method on discrete lattices to solve the nonlinear Poisson equation (lattice Poisson method) with a density evolution method on discrete lattices to solve the Boltzmann-BGK equation (lattice Boltzmann method). In an el...
متن کاملAccuracy analysis of high-order lattice Boltzmann models for rarefied gas flows
In this work, we have theoretically analyzed and numerically evaluated the accuracy of high-order lattice Boltzmann (LB) models for capturing non-equilibrium effects in rarefied gas flows. In the incompressible limit, the LB equation is proved to be equivalent to the linearized Bhatnagar-Gross-Krook (BGK) equation. Therefore, when the same Gauss-Hermite quadrature is used, LB method closely ass...
متن کاملChaotic flows in microchannels: A lattice Boltzmann study
Roughness effects on lubricant flows are investigated via 2D lattice Boltzmann simulations. At a Reynolds numbers of order 1000 a transition from laminar to unsteady flow is observed by an increase of the roughness height from about 10% to about 25% of the channel width. At lower Reynolds numbers (where the flow is laminar in both channels), the transition is observed when increasing the wall r...
متن کاملModeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods
We present a numerical framework to solve the dynamic model for electrokinetic flows in microchannels using coupled lattice Boltzmann methods. The governing equation for each transport process is solved by a lattice Boltzmann model and the entire process is simulated through an iteration procedure. After validation, the present method is used to study the applicability of the Poisson–Boltzmann ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2005
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.71.047702