Laurent coefficients and Ext of finite graded modules
نویسندگان
چکیده
منابع مشابه
dedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولTight Closure of Finite Length Modules in Graded Rings
In this article, we look at how the equivalence of tight closure and plus closure (or Frobenius closure) in the homogeneous m-coprimary case implies the same closure equivalence in the non-homogeneous m-coprimary case in standard graded rings. Although our result does not depend upon dimension, the primary application is based on results known in dimension 2 due to the recent work of H. Brenner...
متن کاملVanishing of Ext, Cluster Tilting Modules and Finite Global Dimension of Endomorphism Rings
Let R be a Cohen-Macaulay ring and M a maximal CohenMacaulay R-module. Inspired by recent striking work by Iyama, BurbanIyama-Keller-Reiten and Van den Bergh we study the question of when the endomorphism ring of M has finite global dimension via certain conditions about vanishing of Ext modules. We are able to strengthen certain results by Iyama on connections between a higher dimension versio...
متن کاملGraded Rings and Modules
1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...
متن کاملDifferential Graded Modules and Cosimplicial Modules
The ultimate purpose of this part is to explain the definition of models for the rational homotopy of spaces. In our constructions, we use the classical Sullivan model, defined in terms of unitary commutative cochain dg-algebras, and a cosimplicial version of this model, involving cosimplicial algebra structures. The purpose of this preliminary chapter is to provide a survey of constructions on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 1997
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s002080050041