Laurent series expansion for solutions of hypoelliptic equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laurent Series Solutions of Algebraic Ordinary Differential Equations

This paper concerns Laurent series solutions of algebraic ordinary differential equations (AODEs). We first present several approaches to compute formal power series solutions of a given AODE. Then we determine a bound for orders of its Laurent series solutions. Using the order bound, one can transform a given AODE into a new one whose Laurent series solutions are only formal power series. The ...

متن کامل

Beta-expansion and continued fraction expansion over formal Laurent series

Let x ∈ I be an irrational element and n 1, where I is the unit disc in the field of formal Laurent series F((X−1)), we denote by kn(x) the number of exact partial quotients in continued fraction expansion of x, given by the first n digits in the β-expansion of x, both expansions are based on F((X−1)). We obtain that lim inf n→+∞ kn(x) n = degβ 2Q∗(x) , lim sup n→+∞ kn(x) n = degβ 2Q∗(x) , wher...

متن کامل

Sharp Hypoelliptic Estimates for Some Kinetic Equations

We provide a simple overview of some hypoellipticity results with sharp indices for a class of kinetic equations and we outline a general strategy based on some geometrical properties.

متن کامل

Hypoelliptic Regularity in Kinetic Equations

We establish new regularity estimates, in terms of Sobolev spaces, of the solution f to a kinetic equation. The right-hand side can contain partial derivatives in time, space and velocity, as in classical averaging, and f is assumed to have a certain amount of regularity in velocity. The result is that f is also regular in time and space, and this is related to a commutator identity introduced ...

متن کامل

Uniform Schauder Estimates for Regularized Hypoelliptic Equations

In this paper we are concerned with a family of elliptic operators represented as sum of square vector fields: L = ∑m i=1X 2 i + ∆ in Rn, where ∆ is the Laplace operator, m < n, and the limit operator L = ∑m i=1X 2 i is hypoelliptic. Here we establish Schauder’s estimates, uniform with respect to the parameter , of solution of the approximated equation L u = f , using a modification of the lift...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Polonici Mathematici

سال: 2002

ISSN: 0066-2216,1730-6272

DOI: 10.4064/ap78-3-6