Law of large numbers for Betti numbers of homogeneous and spatially independent random simplicial complexes
نویسندگان
چکیده
The Linial–Meshulam complex model is a natural higher dimensional analog of the Erdős–Rényi graph model. In recent years, Linial and Peled established limit theorem for Betti numbers complexes with an appropriate scaling underlying parameter. present article aims to extend that result more general random simplicial models. We introduce class homogeneous spatially independent complexes, including clique as special cases, we study asymptotic behavior their numbers. Moreover, obtain convergence empirical spectral distributions Laplacians. A key element in argument local weak complexes. Inspired by work Peled, establish
منابع مشابه
Laws of Large Numbers for Random Linear
The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the...
متن کاملPersistent Betti numbers of random Čech complexes
We study the persistent homology of random Čech complexes. Generalizing a method of Penrose for studying random geometric graphs, we first describe an appropriate theoretical framework in which we can state and address our main questions. Then we define the kth persistent Betti number of a random Čech complex and determine its asymptotic order in the subcritical regime. This extends a result of...
متن کاملRandom Complexes and l 2 - Betti Numbers
Uniform spanning trees on finite graphs and their analogues on infinite graphs are a well-studied area. On a Cayley graph of a group, we show that they are related to the first l-Betti number of the group. Our main aim, however, is to present the basic elements of a higher-dimensional analogue on finite and infinite CW-complexes, which relate to the higher l-Betti numbers. One consequence is a ...
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Random Structures and Algorithms
سال: 2021
ISSN: ['1042-9832', '1098-2418']
DOI: https://doi.org/10.1002/rsa.21015