Learning temporal-spatial consistency correlation filter for visual tracking
نویسندگان
چکیده
منابع مشابه
Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking
Discriminative Correlation Filters (DCF) are efficient in visual tracking but suffer from unwanted boundary effects. Spatially Regularized DCF (SRDCF) has been suggested to resolve this issue by enforcing spatial penalty on DCF coefficients, which, inevitably, improves the tracking performance at the price of increasing complexity. To tackle online updating, SRDCF formulates its model on multip...
متن کاملLearning Support Correlation Filters for Visual Tracking
Sampling and budgeting training examples are two essential factors in tracking algorithms based on support vector machines (SVMs) as a tradeoff between accuracy and efficiency. Recently, the circulant matrix formed by dense sampling of translated image patches has been utilized in correlation filters for fast tracking. In this paper, we derive an equivalent formulation of a SVM model with circu...
متن کاملLearning Spatial-Aware Regressions for Visual Tracking
In this paper, we analyze the spatial information of deep features, and propose two complementary regressions for robust visual tracking. First, we propose a kernelized ridge regression model wherein the kernel value is defined as the weighted sum of similarity scores of all pairs of patches between two samples. We show that this model can be formulated as a neural network and thus can be effic...
متن کاملAttentional Correlation Filter Network for Adaptive Visual Tracking <Supplementary Material>
To show the effect of the parameters used in the Attentional Correlation Filter Network (ACFN), two additional experiments were conducted. In the first experiment, we varied the number of selected tracking modules (Na) in order to validate the robustness of the attentional mechanism, as shown in Fig. 2 (a). For this experiment, the number of tracking modules with high predicted validation score...
متن کاملCFNN: Correlation Filter Neural Network for Visual Object Tracking
Albeit convolutional neural network (CNN) has shown promising capacity in many computer vision tasks, applying it to visual tracking is yet far from solved. Existing methods either employ a large external dataset to undertake exhaustive pre-training or suffer from less satisfactory results in terms of accuracy and robustness. To track single target in a wide range of videos, we present a novel ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Informationis
سال: 2020
ISSN: 1674-7267
DOI: 10.1360/n112018-00232