Learning to complete partial observations from unpaired prior knowledge
نویسندگان
چکیده
منابع مشابه
Learning from Partial Observations
We present a general machine learning framework for modelling the phenomenon of missing information in data. We propose a masking process model to capture the stochastic nature of information loss. Learning in this context is employed as a means to recover as much of the missing information as is recoverable. We extend the Probably Approximately Correct semantics to the case of learning from pa...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملLearning from observational data with prior knowledge
ion Domain layer Inference layer Task layer Strategy layer Figure 2: Degree of abstraction theoretical view When comparing the layers according to degree of abstraction, the above ordering suggests the idea of Fig. 2. However, the design of the strategy layer is, in practice, tightly bound with the problem domain, and can be viewed as more specific than the inference and task layers. Fig. 3 is ...
متن کاملLearning Valuation Distributions from Partial Observations
Auction theory traditionally assumes that bidders’ valuation distributions are known to the auctioneer, such as in the celebrated, revenue-optimal Myerson auction (Myerson 1981). However, this theory does not describe how the auctioneer comes to possess this information. Recently work (Cole and Roughgarden 2014) showed that an approximation based on a finite sample of independent draws from eac...
متن کاملA Divide and Conquer Approach to Learning from Prior Knowledge
This paper introduces a new machine learning task|model calibration|and presents a method for solving a particularly diicult model calibration task that arose as part of a global climate change research project. The model calibration task is the problem of training the free parameters of a scientiic model in order to optimize the accuracy of the model for making future predictions. It is a form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2020
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2020.107426