Lifted Variable Elimination: Decoupling the Operators from the Constraint Language
نویسندگان
چکیده
منابع مشابه
Lifted Variable Elimination: Decoupling the Operators from the Constraint Language
Lifted probabilistic inference algorithms exploit regularities in the structure of graphical models to perform inference more efficiently. More specifically, they identify groups of interchangeable variables and perform inference once per group, as opposed to once per variable. The groups are defined by means of constraints, so the flexibility of the grouping is determined by the expressivity o...
متن کاملOn the Completeness of Lifted Variable Elimination
Lifting aims at improving the efficiency of probabilistic inference by exploiting symmetries in the model. Various methods for lifted probabilistic inference have been proposed, but our understanding of these methods and the relationships between them is still limited, compared to their propositional counterparts. The only existing theoretical characterization of lifting is a completeness resul...
متن کاملGeneralized Counting for Lifted Variable Elimination
Lifted probabilistic inference methods exploit symmetries in the structure of probabilistic models to perform inference more efficiently. In lifted variable elimination, the symmetry among a group of interchangeable random variables is captured by counting formulas, and exploited by operations that handle such formulas. In this paper we generalize the structure of counting formulas and present ...
متن کاملLifted Variable Elimination for Probabilistic Logic Programming
Lifted inference has been proposed for various probabilistic logical frameworks in order to compute the probability of queries in a time that depends on the size of the domains of the random variables rather than the number of instances. Even if various authors have underlined its importance for probabilistic logic programming (PLP), lifted inference has been applied up to now only to relationa...
متن کاملCompleteness Results for Lifted Variable Elimination: Appendix
In this document, we present proofs for Theorem 2 and 3 (given in the paper), and provide more explanation for the empirical evaluation. Further, we present a procedure for tramsforming weighted model counting (WMC) models to parfactor models. 1 PROOF OF THEOREM 2 Let us first recall the theorem. Theorem 2 C-FOVE is a complete domain-lifted algorithm for the class of models in which each atom h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2013
ISSN: 1076-9757
DOI: 10.1613/jair.3793