Likelihood-Based Local Polynomial Fitting for Single-Index Models
نویسندگان
چکیده
منابع مشابه
Local influence analysis for penalized Gaussian likelihood estimation in partially linear single-index models
Single-index model is a potentially tool for multivariate nonparametric regression, generalizes both the generalized linear models(GLM) and the missing-link function problem in GLM. In this paper, we extend Cook’s local influence analysis to the penalized Gaussian likelihood estimator based on P-spline for the partially linear single-index model. Some influence measures, based on the minor pert...
متن کاملEmpirical likelihood for single-index varying-coefficient models
In this paper, we develop statistical inference techniques for the unknown coefficient functions and singleindex parameters in single-index varying-coefficient models. We first estimate the nonparametric component via the local linear fitting, then construct an estimated empirical likelihood ratio function and hence obtain a maximum empirical likelihood estimator for the parametric component. O...
متن کاملLocal likelihood regression in generalized linear single-index models with applications to microarray data
Searching for an effective dimension reduction space is an important problem in regression, especially for high dimensional data such as microarray data. A major characteristic of microarray data consists in the small number of observations n and a very large number of genes p. This “large p, small n” paradigm makes the discriminant analysis for classification difficult. In order to offset this...
متن کاملDerivative estimation with local polynomial fitting
We present a fully automated framework to estimate derivatives nonparametrically without estimating the regression function. Derivative estimation plays an important role in the exploration of structures in curves (jump detection and discontinuities), comparison of regression curves, analysis of human growth data, etc. Hence, the study of estimating derivatives is equally important as regressio...
متن کاملLocal Polynomial Models for Classification∗
Local likelihood approaches to statistical inference attempt to construct nonparametric estimators based on local polynomial fits to the likelihood function at a given point of interest. As opposed to approaches based on the construction of complex global models which are then used in order to predict future behavior, the local models fit a set of parameters to a simple local model in the vicin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2002
ISSN: 0047-259X
DOI: 10.1006/jmva.2000.1984