Limit Distribution of the Banach Random Walk
نویسندگان
چکیده
منابع مشابه
Central Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملScaling Limit of Loop-erased Random Walk
The loop-erased random walk (LERW) was first studied in 1980 by Lawler as an attempt to analyze self-avoiding walk (SAW) which provides a model for the growth of a linear polymer in a good solvent. The self-avoiding walk is simply a path on a lattice that does not visit the same site more than once. Proving things about the collection of all such paths is a formidable challenge to rigorous math...
متن کاملLimit distribution of the degrees in scaled attachment random recursive trees
We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...
متن کاملThe limit distribution of the maximum increment of a random walk with regularly varying jump size distribution
In this paper we deal with the asymptotic distribution of the maximum increment of a random walk with a regularly varying jump size distribution. This problem is motivated by a long-standing problem on change point detection for epidemic alternatives. It turns out that the limit distribution of the maximum increment of the random walk is one of the classical extreme value distributions, the Fré...
متن کاملThe Scaling Limit of Senile Reinforced Random Walk
Abstract We prove that the scaling limit of nearest-neighbour senile reinforced random walk is Brownian Motion when the time T spent on the first edge has finite mean. We show that under suitable conditions, when T has heavy tails the scaling limit is the so-called fractional kinetics process, a random time-change of Brownian motion. The proof uses the standard tools of time-change and invarian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Probability
سال: 2018
ISSN: 0894-9840,1572-9230
DOI: 10.1007/s10959-018-0858-5