Limiting behavior of non-autonomous stochastic reaction–diffusion equations on thin domains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

The Euler Equations on Thin Domains

For the Euler equations in a thin domain Qε = Ω×(0, ε), Ω a rectangle in R, with initial data in (W (Qε)), q > 3, bounded uniformly in ε, the classical solution is shown to exist on a time interval (0, T (ε)), where T ( ) → +∞ as → 0. We compare this solution with that of a system of limiting equations on Ω.

متن کامل

pullback d-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

at present paper, we establish the existence of pullback $mathcal{d}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $l^2(mathbb{r}^n)times l^2(mathbb{r}^n)$. in order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{d}$-absorbing set, is pullback $widehat{d}_0$-asymptotically compact.

متن کامل

Non-autonomous Stochastic Evolution Equations and Applications to Stochastic Partial Differential Equations

In this paper we study the following non-autonomous stochastic evolution equation on a Banach space E,

متن کامل

Limiting dynamics for stochastic wave equations

In this paper, relations between the asymptotic behavior for a stochastic wave equation and a heat equation are considered. By introducing almost surely D–α-contracting property for random dynamical systems, we obtain a global random attractor of the stochastic wave equation νutt + ut − uν + f (uν) = √ νẆ endowed with Dirichlet boundary condition for any 0 < ν 1. The upper semicontinuity of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2017

ISSN: 0022-0396

DOI: 10.1016/j.jde.2016.10.024