Linear groups with rank restrictions on the subgroups of infinite central dimension

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Nilpotent Linear Groups with the Weak Chain Conditions on Subgroups of Infinite Central Dimension

Let V be a vector space over a field F . If G≤GL(V, F ), the central dimension of G is the F -dimension of the vector space V/CV (G). In [DEK] and [KS], soluble linear groups in which the set Licd(G) of all proper infinite central dimensional subgroups of G satisfies the minimal condition and the maximal condition, respectively, have been described. On the other hand, in [MOS], periodic locally...

متن کامل

groups of infinite rank with a normalizer condition on subgroups

groups of infinite rank in which every subgroup is either normal or self-normalizing are characterized in terms of their subgroups of infinite rank.

متن کامل

COUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS

In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...

متن کامل

infinite groups with many generalized normal subgroups

a subgroup $x$ of a group $g$ is almost normal if the index $|g:n_g(x)|$ is finite, while $x$ is nearly normal if it has finite index in the normal closure $x^g$. this paper investigates the structure of groups in which every (infinite) subgroup is either almost normal or nearly normal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2007

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2006.04.002