LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX PRODUCTS OVER SEMIRINGS
نویسندگان
چکیده
منابع مشابه
Quantum Algorithms for Matrix Products over Semirings
In this paper we construct quantum algorithms for matrix products over several algebraic structures called semirings, including the (max,min)-matrix product, the distance matrix product and the Boolean matrix product. In particular, we obtain the following results. • We construct a quantum algorithm computing the product of two n × n matrices over the (max,min) semiring with time complexity O(n...
متن کاملlinear preservers of two-sided matrix majorization
for vectors x, y ∈ rn, it is said that x is left matrix majorizedby y if for some row stochastic matrix r; x = ry. the relationx ∼` y, is defined as follows: x ∼` y if and only if x is leftmatrix majorized by y and y is left matrix majorized by x. alinear operator t : rp → rn is said to be a linear preserver ofa given relation ≺ if x ≺ y on rp implies that t x ≺ ty onrn. the linear preservers o...
متن کاملLinear Preservers of Majorization
For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...
متن کاملLinear Orthogonality Preservers of Hilbert C∗-modules over C∗-algebras with Real Rank Zero
Let A be a C∗-algebra. Let E and F be Hilbert A-modules with E being full. Suppose that θ : E → F is a linear map preserving orthogonality, i.e., 〈θ(x), θ(y)〉 = 0 whenever 〈x, y〉 = 0. We show in this article that if, in addition, A has real rank zero, and θ is an A-module map (not assumed to be bounded), then there exists a central positive multiplier u ∈M(A) such that 〈θ(x), θ(y)〉 = u〈x, y〉 (x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2008
ISSN: 0304-9914
DOI: 10.4134/jkms.2008.45.4.1043