Linear spaces with mixed topology

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic topology of normed linear spaces

In a previous paper [6], the authors introduced the hyperbolic topology on a metric space, which is weaker than the metric topology and naturally derived from the Lawson topology on the space of formal balls. In this paper, we characterize spaces Lp(Ω,Σ, μ) on which the hyperbolic topology induced by the norm ∥·∥p coincides with the norm topology. We show the following. (1) The hyperbolic topol...

متن کامل

Mixing operators on spaces with weak topology

We prove that a continuous linear operator T on a topological vector space X with weak topology is mixing if and only if the dual operator T ′ has no finite dimensional invariant subspaces. This result implies the characterization of hypercyclic operators on the space ω due to Herzog and Lemmert and implies the result of Bayart and Matheron, who proved that for any hypercyclic operator T on ω, ...

متن کامل

Linear operators of Banach spaces with range in Lipschitz algebras

In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.

متن کامل

Topology and Sobolev Spaces

with 1 ≤ p <∞. W (M,N) is equipped with the standard metric d(u, v) = ‖u− v‖W1,p . Our main concern is to determine whether or not W (M,N) is path-connected and if not what can be said about its path-connected components, i.e. its W -homotopy classes. We say that u and v are W -homotopic if there is a path u ∈ C([0, 1],W (M,N)) such that u = u and u = v. We denote by ∼p the corresponding equiva...

متن کامل

Topology Notes: Ordered Spaces

Consider the following properties of a binary relation ≤ on a set X: (Reflexivity) For all x ∈ X, x ≤ x. (Anti-Symmetry) For all x, y ∈ X, if x ≤ y and y ≤ x, then x = y. (Transitivity) For all x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z. (Totality) For all x, y ∈ X, either x ≤ y or y ≤ x. A relation which satisfies reflexivity and transitivity is called a quasi-ordering. A relation which satis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1961

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-20-1-47-68