Linearized polynomial maps over finite fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearized polynomial maps over finite fields

We consider polynomial maps described by so-called (multivariate) linearized polynomials. These polynomials are defined using a fixed prime power, say q. Linearized polynomials have no mixed terms. Considering invertible polynomial maps without mixed terms over a characteristic zero field, we will only obtain (up to a linear transformation of the variables) triangular maps, which are the most b...

متن کامل

On the Dispersions of the Polynomial Maps over Finite Fields

We investigate the distributions of the different possible values of polynomial maps Fq n −→ Fq , x 7−→ P (x) . In particular, we are interested in the distribution of their zeros, which are somehow dispersed over the whole domain Fq n . We show that if U is a “not too small” subspace of Fq n (as a vector space over the prime field Fp ), then the derived maps Fq /U −→ Fq , x + U 7−→ ∑ x̃∈x+U P (...

متن کامل

Value Sets of Polynomial Maps over Finite Fields

We provide upper bounds for the cardinality of the value set of a polynomial map in several variables over a finite field. These bounds generalize earlier bounds for univariate polynomials.

متن کامل

On Sparse Polynomial Interpolation over Finite Fields

We present a Las Vegas algorithm for interpolating a sparse multivariate polynomial over a finite field, represented with a black box. Our algorithm modifies the algorithm of BenOr and Tiwari in 1988 for interpolating polynomials over rings with characteristic zero to characteristic p by doing additional probes. One of the best algorithms for sparse polynomial interpolation over a finite field ...

متن کامل

Univariate Polynomial Factorization Over Finite Fields

This paper shows that a recently proposed approach of D. Q. Wan to bivariate factorization over finite fields, the univariate factoring algorithm of V. Shoup, and the new bound of this paper for the average number of irreducible divisors of polynomials of a given degree over a finite field can be used to design a bivariate factoring algorithm that is polynomial for "almost all" bivariate polyno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2014

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2013.10.013