Local convergence for multistep high order methods under weak conditions
نویسندگان
چکیده
منابع مشابه
A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions
We present a unified local convergence analysis for Chebyshev-Halleytype methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Our methods include the Chebyshev; Halley; super-Halley and other high order methods. The convergence ball and error estimates are given for these methods under the same conditions. Numerical examples are also provided in this stu...
متن کاملLocal Convergence of an Optimal Eighth Order Method under Weak Conditions
We study the local convergence of an eighth order Newton-like method to approximate a locally-unique solution of a nonlinear equation. Earlier studies, such as Chen et al. (2015) show convergence under hypotheses on the seventh derivative or even higher, although only the first derivative and the divided difference appear in these methods. The convergence in this study is shown under hypotheses...
متن کاملStabilized Local Non-reflecting Boundary Conditions for High Order Methods
Using the framework introduced by Rowley and Colonius [14] we construct a discretely non-reflecting boundary condition for the one-way wave equation spatially discretized with an explicit fourth order centered difference scheme. The boundary condition, which can be extended to arbitrary order accuracy, is shown to be GKSstable. We continue by deriving discretely non-reflecting boundary conditio...
متن کاملConvergence to Lévy stable processes under some weak dependence conditions
For a strictly stationary sequence of random vectors in R we study convergence of partial sums processes to a Lévy stable process in the Skorohod space with J1-topology. We identify necessary and sufficient conditions for such convergence and provide sufficient conditions when the stationary sequence is strongly mixing.
متن کاملLocal Convergence of Newton’s Method Under a Weak Gamma Condition
We provide a local convergence analysis of Newton’s method under a weak gamma condition on a Banach space setting. It turns out that under the same computational cost and weaker hypotheses than in [4], [5], [7], we can obtain a larger radius of convergence and finer estimates on the distances involved. AMS (MOS) Subject Classification Codes: 65G99, 65B05, 47H17, 49M15.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicationes Mathematicae
سال: 2020
ISSN: 1233-7234,1730-6280
DOI: 10.4064/am2374-1-2019