Local Functional Coefficient Autoregressive Model for Multistep Prediction of Chaotic Time Series
نویسندگان
چکیده
منابع مشابه
Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملFunctional coefficient autoregressive models for vector time series
We extend the functional coefficient autoregressive (FCAR) model to the multivariate nonlinear time series framework. We show how to estimate parameters of the model using kernel regression techniques, discuss properties of the estimators, and provide a bootstrap test for determining the presence of nonlinearity in a vector time series. The power of the test is examined through extensive simula...
متن کاملFunctional Coefficient Autoregressive Nonlinear Time-series Model for Describing Indian Lac Export Data
INTRODUCTION Box Jenkins’ linear autoregressive integrated moving average (ARIMA) methodology is widely used for analyzing time-series data. Beyond ‘linear’ domain, there are many nonlinear forms to be explored. In fact, nonlinear time-series analysis has been one of the major areas of research in Time-series analysis for more than two decades now. These models are generally more appropriate th...
متن کاملMultistep-Ahead Time Series Prediction
Multistep-ahead prediction is the task of predicting a sequence of values in a time series. A typical approach, known as multi-stage prediction, is to apply a predictive model step-by-step and use the predicted value of the current time step to determine its value in the next time step. This paper examines two alternative approaches known as independent value prediction and parameter prediction...
متن کاملNear–Integrated Random Coefficient Autoregressive Time Series
We determine the limiting behavior of near–integrated first–order random coefficient autoregressive RCA(1) time series. It is shown that the asymptotics of the finite dimensional distributions crucially depends on how the critical value 1 is approached, which determines whether the process is near–stationary, has a unit–root or is mildly explosive. In a second part, we derive the limit distribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2015
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2015/329487