Local Hölder continuity of weak solutions for an anisotropic elliptic equation
نویسندگان
چکیده
منابع مشابه
The Hölder continuity of solutions to generalized vector equilibrium problems
In this paper, by using a weaker assumption, we discuss the Hölder continuity of solution maps for two cases of parametric generalized vector equilibrium problems under the case that the solution map is a general set-valued one, but not a single-valued one. These results extend the recent ones in the literature. Several examples are given for the illustration of our results.
متن کاملHölder continuity of solution maps to a parametric weak vector equilibrium problem
In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.
متن کاملExistence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملSolutions for a local equation of anisotropic plant cell growth: an analytical study of expansin activity.
This paper presents a generalization of the Lockhart equation for plant cell/organ expansion in the anisotropic case. The intent is to take into account the temporal and spatial variation in the cell wall mechanical properties by considering the wall 'extensibility' (Φ), a time- and space-dependent parameter. A dynamic linear differential equation of a second-order tensor is introduced by descr...
متن کاملConcentrating solutions for an anisotropic elliptic problem with large exponent
We consider the following anisotropic boundary value problem ∇(a(x)∇u) + a(x)u = 0, u > 0 in Ω, u = 0 on ∂Ω, where Ω ⊂ R2 is a bounded smooth domain, p is a large exponent and a(x) is a positive smooth function. We investigate the effect of anisotropic coefficient a(x) on the existence of concentrating solutions. We show that at a given strict local maximum point of a(x), there exist arbitraril...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA
سال: 2012
ISSN: 1021-9722,1420-9004
DOI: 10.1007/s00030-012-0160-7