Local Rigidity of Symmetric Spaces
نویسندگان
چکیده
منابع مشابه
Local rigidity of infinite dimensional Teichmüller Spaces
This paper presents a rigidity theorem for infinite dimensional Bergman spaces of hyperbolic Riemann surfaces, which states that the Bergman space A1(M), for such a Riemann surface M , is isomorphic to the Banach space of summable sequence, l1. This implies that whenever M and N are Riemann surfaces which are not analytically finite, and in particular are not necessarily homeomorphic, then A1(M...
متن کاملRigidity of Rank-one Factors of Compact Symmetric Spaces
We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.
متن کاملRigidity of quasi-isometries for symmetric spaces and Euclidean buildings
for all x ∈ X . Quasi-isometries occur naturally in the study of the geometry of discrete groups since the length spaces on which a given finitely generated group acts cocompactly and properly discontinuously by isometries are quasi-isometric to one another [Gro]. Quasi-isometries also play a crucial role in Mostow’s proof of his rigidity theorem: the theorem is proved by showing that equivaria...
متن کاملRigidity of Invariant Convex Sets in Symmetric Spaces
The main result implies that a proper convex subset of an irreducible higher rank symmetric space cannot have Zariski dense stabilizer.
متن کاملGriffiths-harris Rigidity of Compact Hermitian Symmetric Spaces
I show that any complex manifold that resembles a rank two compact Hermitian symmetric space (other than a quadric hypersurface) to order two at a general point must be an open subset of such a space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1990
ISSN: 0002-9947
DOI: 10.2307/2001755