Localisation of spectral sums corresponding to the sub-Laplacian on the Heisenberg group
نویسندگان
چکیده
In this article we study localisation of spectral sums $\{S_R\}_{R > 0}$ associated to the sub-Laplacian $\mathcal{L}$ on Heisenberg Group $\mathbb{H}^d$ where $S_R f := \int_0^R dE_{\lambda }f$, with $\mathcal{L} = \int_0^{\infty} \lambda \, dE_{\lambda}$ being resolution $\mathcal{L}.$ We prove that for any compactly supported function $f \in L^2(\mathbb{H}^d)$, and $\gamma < \frac{1}{2}$, $R^{\gamma} S_R \to 0$ as $ R \infty$, almost everywhere off $supp (f)$.
منابع مشابه
Estimates for Spectral Projection Operators of the Sub-Laplacian on the Heisenberg Group
In this paper, we use Laguerre calculus to find the Lp spectrum (λ, μ) of the pair (L, iT). Here L = −12 ∑n j=1(ZjZj+ZjZj) andT = ∂ ∂t with {Z1, . . . ,Zn,Z1, , . . . ,Zn,T} a basis for the left-invariant vector fields on the Heisenberg group. We find kernels for the spectral projection operators on the ray λ > 0 in the Heisenberg brush and show that they are Calderón-Zygmund-Mikhlin operators....
متن کاملL-spectral Multipliers for the Hodge Laplacian Acting on 1-forms on the Heisenberg Group
Abstract. We prove that, if ∆1 is the Hodge Laplacian acting on differential 1forms on the (2n+1)-dimensional Heisenberg group, and if m is a Mihlin-Hörmander multiplier on the positive half-line, with L-order of smoothness greater than n+ 1 2 , then m(∆1) is L-bounded for 1 < p < ∞. Our approach leads to an explicit description of the spectral decomposition of ∆1 on the space of L-forms in ter...
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولTHE LAPLACIAN ON p-FORMS ON THE HEISENBERG GROUP
The Novikov-Shubin invariants for a non-compact Riemannian manifold M can be defined in terms of the large time decay of the heat operator of the Laplacian on L p-forms, △p, on M . For the (2n + 1)-dimensional Heisenberg group H2n+1, the Laplacian △p can be decomposed into operators△p,n(k) in unitary representations β̄k which, when restricted to the centre of H, are characters (mapping ω to exp(...
متن کاملEstimates for Powers of Sub-laplacian on the Non-isotropic Heisenberg Group
Assume that Lα = − 12 ∑n j=1(ZjZ̄j + Z̄jZj) + iαT is the sub-Laplacian on the nonisotropic Heisenberg group Hn; Zj , Z̄j for j = 1, 2, · · · , n and T are the basis of the Lie algebra hn. We apply the Laguerre calculus to obtain the explicit kernel for the fundamental solution of the powers of Lα and the heat kernel exp{−sLα}. Estimates for this kernel in various function spaces can be deduced eas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2022
ISSN: ['1943-5258', '0022-2518', '1943-5266']
DOI: https://doi.org/10.1512/iumj.2022.71.8889