Locally compact spaces of countable core and Alexandroff compactification
نویسندگان
چکیده
منابع مشابه
Locally Compact, Locally Countable Spaces and Random Reals
In this note I will present a proof that, assuming PFA, if R is a measure algebra then after forcing with R every uncountable locally compact locally countable cometrizable space contains an uncountable discrete set. The lemmas and techniques will be presented in a general form as they may be applicable to other problems.
متن کاملLocally Compact, Ω1-compact Spaces
This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...
متن کاملOne-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملCH and first countable , countably compact spaces ✩
We show that it is consistent with the Continuum Hypothesis that first countable, countably compact spaces with no uncountable free sequences are compact. As a consequence, we get that CH does not imply the existence of a perfectly normal, countably compact, non-compact space, answering a question of Nyikos (Question 287 in the numbering of van Mill and Reed, Open Problems in Topology, Elsevier...
متن کاملLocally Compact Path Spaces
It is shown that the space X [0,1], of continuous maps [0, 1] → X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T1-space X, it follows that X [0,1] is locally compact if and only if X is locally compact and totally path-disconnected. AMS Classification: 54C35, 54E45, 55P35, 18B30, 18D15
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2007
ISSN: 0166-8641
DOI: 10.1016/j.topol.2005.05.011