Logic of Negation-Complete Interactive Proofs (Formal Theory of Epistemic Deciders)

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logic of Negation-Complete Interactive Proofs (Formal Theory of Epistemic Deciders)

We produce a decidable classical normal modal logic of internalised negation-complete or disjunctive non-monotonic interactive proofs (LDiiP) from an existing logical counterpart of non-monotonic or instant interactive proofs (LiiP). LDiiP internalises agent-centric proof theories that are negation-complete (maximal) and consistent (and hence strictly weaker than, for example, Peano Arithmetic)...

متن کامل

A Logic of Interactive Proofs (Formal Theory of Knowledge Transfer)

We propose a logic of interactive proofs as a framework for an intuitionistic foundation for interactive computation, which we construct via an interactive analog of the Gödel-McKinsey-Tarski-Artëmov definition of Intuitionistic Logic as embedded into a classical modal logic of proofs, and of the Curry-Howard isomorphism between intuitionistic proofs and typed programs. Our interactive proofs e...

متن کامل

Negation-Complete Logic Programs

We give a short, direct proof that a logic program is negationcomplete if, and only if, it has the cut-property. The property negationcomplete refers to three-valued models, the cut-property is defined in terms of ESLDNF-computations only.

متن کامل

Logic of Non-monotonic Interactive Proofs

We propose a monotonic logic of internalised non-monotonic or instant interactive proofs (LiiP) and reconstruct an existing monotonic logic of internalised monotonic or persistent interactive proofs (LiP) as a minimal conservative extension of LiiP. Instant interactive proofs effect a fragile epistemic impact in their intended communities of peer reviewers that consists in the impermanent induc...

متن کامل

A Logic-style Version of Interactive Proofs

Interactive proofs are de ned in terms of a conversation between two Turing machines, the prover and the veri er. We de ne an equivalent kind of proof in terms more usual for logic: our proofs are derivations from axioms by rules of inference. Namely, we consider proofs in formal arithmetic extended by some additional rule that uses random numbers. Such a proof can be considerably shorter than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Notes in Theoretical Computer Science

سال: 2014

ISSN: 1571-0661

DOI: 10.1016/j.entcs.2013.12.011