LOLE Calculation and Capacity Margin Probabilities Neuro-Fuzzy Model Development

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-fuzzy approach for development of new neuron model

The training time of ANN depends on size of ANN (i.e. number of hidden layers and number of neurons in each layer), size of training data, their normalization range and type of mapping of training patterns (like X–Y, X–DY, DX–Y and DX–DY), error functions and learning algorithms. The efforts have been done in past to reduce training time of ANN by selection of an optimal network and modificatio...

متن کامل

Neuro-Fuzzy Hardware: Design, Development and Performance

| This paper introduces hardware implementations of Arti cial Neural Networks and Fuzzy Systems. Several implementation methodologies are described, ranging from fully digital to fully analog ones. Advantages and drawbacks are outlined and performance of existing implementations are presented. The paper also analyzes hardware performance parameters and tradeo s, and the bottlenecks intrinsic in...

متن کامل

Neuro-fuzzy Systems D1.3 Neuro-fuzzy algorithms

See the abstract for Chapter D1. Relatively early in neural network research there emerged an interest in analyzing and designing layered, feedforward networks augmented by some formalism stemming from the theory of fuzzy sets. One of B2.3 the first approaches was the fuzzification of the binary McCulloch–Pitts neuron (Lee and Lee 1975). B1.2 Then, several researchers looked at a typical feedfo...

متن کامل

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

متن کامل

A Neuro-fuzzy Model for Nonlinear

A improved parallel Recurrent Neural Network (RNN) model and an improved dynamic Backpropagation (BP) method of its learning, are proposed. The RNN model is given as a two layer Jordan canonical architecture for both continuous and discrete-time cases. The output layer is of Feedforward type. The hidden layer is a recurrent one with self-feedbacks and full forward connections with the inputs. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computing and Digital Systems

سال: 2023

ISSN: ['2210-142X', '2535-9886']

DOI: https://doi.org/10.12785/ijcds/130140