LoRD-Net: Unfolded Deep Detection Network With Low-Resolution Receivers

نویسندگان

چکیده

The need to recover high-dimensional signals from their noisy low-resolution quantized measurements is widely encountered in communications and sensing. In this paper, we focus on the extreme case of one-bit quantizers, propose a deep detector entitled LoRD-Net for recovering information symbols measurements. Our method model-aware data-driven architecture based unfolding first-order optimization iterations. has task-based dedicated underlying signal interest without requiring prior knowledge channel matrix through which are obtained. proposed much fewer parameters compared black-box networks due incorporation domain-knowledge design its architecture, allowing it operate fashion while benefiting flexibility, versatility, reliability model-based methods. operates blind fashion, requires addressing both non-linear nature data-acquisition system as well identifying proper objective recovery. Accordingly, two-stage training LoRD-Net, first stage form process unfold, latter trains resulting model an end-to-end manner. We numerically evaluate receiver recovery wireless demonstrate that hybrid methodology outperforms state-of-the-art methods, utilizing small datasets, order merely ? 500 samples, training.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MSR-net: Low-light Image Enhancement Using Deep Convolutional Network

Images captured in low-light conditions usually suffer from very low contrast, which increases the difficulty of subsequent computer vision tasks in a great extent. In this paper, a low-light image enhancement model based on convolutional neural network and Retinex theory is proposed. Firstly, we show that multi-scale Retinex is equivalent to a feedforward convolutional neural network with diff...

متن کامل

Corefrence resolution with deep learning in the Persian Labnguage

Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...

متن کامل

Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism

Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Pedestrian Detection with Deep Convolutional Neural Network

The problem of pedestrian detection in image and video frames has been extensively investigated in the past decade. However, the low performance in complex scenes shows that it remains an open problem. In this paper, we propose to cascade simple Aggregated Channel Features (ACF) and rich Deep Convolutional Neural Network (DCNN) features for efficient and effective pedestrian detection in comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2021

ISSN: ['1053-587X', '1941-0476']

DOI: https://doi.org/10.1109/tsp.2021.3117503