Loss of Conformational Stability in Calmodulin upon Methionine Oxidation
نویسندگان
چکیده
منابع مشابه
Loss of conformational stability in calmodulin upon methionine oxidation.
We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and mo...
متن کاملImpact of methionine oxidation on calmodulin structural dynamics.
We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects id...
متن کاملDiscrete reduction of type I collagen thermal stability upon oxidation.
The oxidation of acid-soluble calf skin collagen type I caused by metal-dependent free radical generating systems, Fe(II)/H2O2 and Cu(II)/H2O2, was found to bring down in a specific, discrete way the collagen thermal stability, as determined by microcalorimetry and scanning densitometry. Initial oxidation results in splitting of the collagen denaturational transition into two components. Along ...
متن کاملCalmodulin oxidation and methionine to glutamine substitutions reveal methionine residues critical for functional interaction with ryanodine receptor-1.
Calmodulin (CaM) binds to the skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1) with high affinity, and it may act as a Ca(2+)-sensing subunit of the channel. Apo-CaM increases RyR1 channel activity, but Ca(2+)-CaM is inhibitory. Here we examine the functional effects of CaM oxidation on RyR1 regulation by both apo-CaM and Ca(2+)-CaM, as assessed via determinations of [(3)H]ryano...
متن کاملConformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer.
A microfluidic mixer is applied to study the kinetics of calmodulin conformational changes upon Ca2+ binding. The device facilitates rapid, uniform mixing by decoupling hydrodynamic focusing from diffusive mixing and accesses time scales of tens of microseconds. The mixer is used in conjunction with multiphoton microscopy to examine the fast Ca2+-induced transitions of acrylodan-labeled calmodu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 1998
ISSN: 0006-3495
DOI: 10.1016/s0006-3495(98)77830-0