Lower bounds for the independence andk-independence number of graphs using the concept of degenerate degrees
نویسندگان
چکیده
منابع مشابه
Some lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولNew Lower Bounds for the Independence Number of Sparse Graphs and Hypergraphs
We obtain new lower bounds for the independence number of Kr-free graphs and linear kuniform hypergraphs in terms of the degree sequence. This answers some old questions raised by Caro and Tuza [7]. Our proof technique is an extension of a method of Caro and Wei [6, 20], and we also give a new short proof of the main result of [7] using this approach. As byproducts, we also obtain some non-triv...
متن کاملsome lower bounds for the $l$-intersection number of graphs
for a set of non-negative integers~$l$, the $l$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $a_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|a_u cap a_v|in l$. the bipartite $l$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملA new lower bound on the independence number of graphs
We propose a new lower bound on the independence number of a graph. We show that our bound compares favorably to recent ones (e.g. [12]). We obtain our bound by using the Bhatia-Davis inequality applied with analytical results (minimum, maximum, expectation and variance) of an algorithm for the vertex cover problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2016
ISSN: 0166-218X
DOI: 10.1016/j.dam.2015.09.023