M ‐curves of degree 9 with deep nests
نویسندگان
چکیده
منابع مشابه
Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملOptimal Ate Pairing on Elliptic Curves with Embedding Degree 9, 15 and 27
Since the advent of pairing based cryptography, much attention has been given to efficient computation of pairings on elliptic curves with even embedding degrees. The few works that exist in the case of odd embedding degrees require some improvements. This paper considers the computation of optimal ate pairings on elliptic curves of embedding degrees k = 9, 15 and 27 which have twists of order ...
متن کاملM-polynomial and degree-based topological indices
Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملM ay 2 00 9 Genus 3 curves with many involutions and application to maximal curves in characteristic 2
Let k = Fq be a finite field of characteristic 2. A genus 3 curve C/k has many involutions if the group of k-automorphisms admits a C2 × C2 subgroup H (not containing the hyperelliptic involution if C is hyperelliptic). Then C is an ArtinSchreier cover of the three elliptic curves obtained as the quotient of C by the nontrivial involutions of H , and the Jacobian of C is k-isogenous to the prod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2009
ISSN: 0024-6107,1469-7750
DOI: 10.1112/jlms/jdp010