Machine learning and big scientific data
نویسندگان
چکیده
منابع مشابه
How big data changes statistical machine learning
This presentation illustrates how big data forces change on algorithmic techniques and the goals of machine learning, bringing along challenges and opportunities. 1. The theoretical foundations of statistical machine learning traditionally assume that training data is scarce. If one assumes instead that data is abundant and that the bottleneck is the computation time, stochastic algorithms with...
متن کاملOnline Machine Learning in Big Data Streams
The area of online machine learning in big data streams covers algorithms that are (1) distributed and (2) work from data streams with only a limited possibility to store past data. The first requirement mostly concerns software architectures and efficient algorithms. The second one also imposes nontrivial theoretical restrictions on the modeling methods: In the data stream model, older data is...
متن کاملMachine Learning Big Data Framework and Analytics for Big Data Problems
Generally, big data computing deals with massive and high dimensional data such as DNA microrray data, financial data, medical imagery, satellite imagery and hyperspectral imagery. Therefore, big data computing needs advanced technologies or methods to solve the issues of computational time to extract valuable information without information loss. In this context, generally, Machine Learning (M...
متن کاملStrategies and Principles of Distributed Machine Learning on Big Data
The rise of Big Data has led to new demands for Machine Learning (ML) systems to learn complex models with millions to billions of parameters, that promise adequate capacity to digest massive datasets and offer powerful predictive analytics (such as high-dimensional latent features, intermediate representations, and decision functions) thereupon. In order to run ML algorithms at such scales, on...
متن کاملBig Data Analytic and Mining with Machine Learning Algorithm
Big Data concern large-volume, complex, growing data sets with multiple, autonomous sources. With the fast development of networking, data storage, and the data collection capacity, Big Data are now rapidly expanding in all science and engineering domains, including physical, biological and biomedical sciences. This datadriven model involves demand-driven aggregation of information sources, min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
سال: 2020
ISSN: 1364-503X,1471-2962
DOI: 10.1098/rsta.2019.0054