Magnetocaloric effect in pyrochlore antiferromagnetGd2Ti2O7
نویسندگان
چکیده
منابع مشابه
Magnetocaloric effect in La0.75Sr0.25MnO3 manganite
The polycrystalline manganite La0.75Sr0.25MnO3 prepared by an alternative carbonate precipitation route reveals the rhombohedral perovskite structure. Magnetization isotherms measured up to 2 T are used to determine Curie temperature of 332 K by means of Arrott plot. Maximum of magnetic entropy change is found at Curie temperature. The relative cooling power equal to 64 J/kg for 1.5 T magnetic ...
متن کاملMagnetocaloric effect in one-dimensional antiferromagnets
An external magnetic field induces large relative changes in the entropy of one-dimensional quantum spin systems at finite temperatures. This leads to a magnetocaloric effect, i.e. a change in temperature during an adiabatic (de)magnetization process. Several examples of one-dimensional spin-1/2 models are studied by employing the Jordan-Wigner transformation and exact diagonalization. During a...
متن کاملMagnetocaloric effect in quantum spin-s chains
We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i.e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s = 1 chain and show that one can cool by closing the Haldane gap wit...
متن کاملTunable magnetocaloric effect in transition metal alloys
The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based "high entropy alloys" in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperatur...
متن کاملMagnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In
Applying a magnetic field to a ferromagnetic Ni50Mn34In16 alloy in the martensitic state induces a structural phase transition to the austenitic state. This is accompanied by a strain which recovers on removing the magnetic field, giving the system a magnetically superelastic character. A further property of this alloy is that it also shows the inverse magnetocaloric effect. The magnetic supere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2005
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.71.094413