Magnetohydrodynamic Flow in Rectangular Channel
نویسندگان
چکیده
منابع مشابه
Magnetohydrodynamic Flow in Horizontal Concentric Cylinders
This article presents the exact solutions of the velocity and temperature fields for a steady fully developed magnetohydrodynamic flow of a viscous incompressible and electrically conducting fluid between two horizontal concentric cylinders. Our study focuses on the influence of the Hartmann number, Brinkman number, Péclet number and inner radius on the fluid temperature field, entropy generati...
متن کاملExperimental study of secondary flow in a magnetohydrodynamic channel
The Hall effect in the magnetohydrodynamic (MHD) channel flow of a plasma leads to the presence of transverse Lorentz forces. The non-uniform distribution of these body forces may cause secondary flows to develop; these can exert a significant influence on the plasma momentum, thermal and electrical behaviour. The effect is predicted to be large for envisioned large-scale MHD devices. An experi...
متن کاملInvestigation of Laminar Pulsating Nanofluid Flow and Heat Transfer in a Rectangular Channel
In this study, two-dimensional pulsating unsteady flow of nanofluid through a rectangular channel with isothermal walls is investigated numerically. The set of resultant algebraic equations is solved simultaneously using SIMPLE algorithm to obtain the velocity and pressure distribution within the channel. The effects of several parameters, such as volume fraction of different nanoparticles, Rey...
متن کاملMAGNETOHYDRODYNAMIC AND THERMAL ISSUES OF THE SiCf0SiC FLOW CHANNEL INSERT
In the dual-coolant lead lithium (DCLL) blanket, the key element is the flow channel insert (FCI) made of a silicon carbide composite (SiCf /SiC), which serves as electric and thermal insulator. The most important magnetohydrodynamic (MHD) and thermal issues of the FCI, associated with MHD flows and heat transfer in the poloidal channel of the blanket, were studied with numerical simulations us...
متن کاملPressure Drop Measurements in Rectangular Micro - Channel Using Gas Flow
Due to the need for practical cooling technologies which could dissipate high heat fluxes, an experimental study of pressure drop in micro-channel was performed. In this work, laminar flow friction factors were determined using gas (air) as flow medium. Pressure drop vs flow rate data were used to evaluate friction factors in two parallel microchannels, namely MCP1 and MCP2 (1.0 mm deep x 0.240...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nuclear Science and Technology
سال: 1999
ISSN: 0022-3131,1881-1248
DOI: 10.1080/18811248.1999.9726187