Manifolds with singularities accepting a metric of positive scalar curvature
نویسندگان
چکیده
منابع مشابه
Manifolds with singularities accepting a metric of positive scalar curvature
We study the question of existence of a Riemannian metric of positive scalar curvature metric on manifolds with the Sullivan–Baas singularities. The manifolds we consider are Spin and simply connected. We prove an analogue of the Gromov–Lawson Conjecture for such manifolds in the case of particular type of singularities. We give an affirmative answer when such manifolds with singularities accep...
متن کامل1 N ov 1 99 9 Manifolds with singularities accepting a metric of positive scalar curvature
We study the question of existence of a Riemannian metric of positive scalar curvature metric on manifolds with the Sullivan-Baas singularities. The manifolds we consider are Spin and simply connected. We prove an analogue of the Gromov-Lawson Conjecture for such manifolds in the case particular type of singularities. We give an affirmative answer when such manifolds with singularities accept a...
متن کاملSimply Connected Manifolds of Positive Scalar Curvature
Hitchin proved that if M is a spin manifold with positive scalar curvature, then the A^O-characteristic number a(M) vanishes. Gromov and Lawson conjectured that for a simply connected spin manifold M of dimension > 5, the vanishing of a(M) is sufficient for the existence of a Riemannian metric on M with positive scalar curvature. We prove this conjecture using techniques from stable homotopy th...
متن کاملPositive Scalar Curvature of Totally Nonspin Manifolds
In this paper we address the issue of positive scalar curvature on oriented nonspin compact manifolds whose universal cover is also nonspin. We provide a conjecture for an obstruction to such curvature in this venue that takes into account all the data known to date. The conjecture is proved for a wide class of closed manifolds based on their fundamental group structure.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2001
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2001.5.683