Matrices with higher order displacement structure

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Matrices with Displacement Structure:

For matrices with displacement structure, basic operations like multiplication, in4 version, and linear system solving can all be expressed in terms of the following task: evaluate the 5 product AB, where A is a structured n × n matrix of displacement rank α, and B is an arbitrary 6 n × α matrix. Given B and a so-called generator of A, this product is classically computed with a 7 cost ranging ...

متن کامل

On matrices with displacement structure: generalized operators and faster algorithms

For matrices with displacement structure, basic operations like multiplication, inversion, and linear system solving can all be expressed in terms of the following task: evaluate the product AB, where A is a structured n × n matrix of displacement rank α, and B is an arbitrary n × α matrix. Given B and a so-called generator of A, this product is classically computed with a cost ranging from O(α...

متن کامل

Learning Higher-Order Graph Structure with Features by Structure Penalty

In discrete undirected graphical models, the conditional independence of node labels Y is specified by the graph structure. We study the case where there is another input random vector X (e.g. observed features) such that the distribution P (Y | X) is determined by functions of X that characterize the (higher-order) interactions among the Y ’s. The main contribution of this paper is to learn th...

متن کامل

A Higher-Order Structure Tensor

Structure tensors are a common tool for orientation estimation in image processing and computer vision. We present a generalization of the traditional second-order model to a higher-order structure tensor (HOST), which is able to model more than one significant orientation, as found in corners, junctions, and multi-channel images. We provide a theoretical analysis and a number of mathematical t...

متن کامل

Displacement Structure Approach to Polynomial Vandermonde and Related Matrices

In this paper we introduce a new class of what we shall call polynomial Vandermonde-like matrices. This class generalizes the polynomial Vandermonde matrices studied earlier by various authors, who derived explicit inversion formulas and fast algorithms for inversion and for solving the associated linear systems. A displacement structure approach allows us to carry over all these results to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1998

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(97)10085-4