Maximum empirical likelihood estimation and related topics
نویسندگان
چکیده
منابع مشابه
On Maximum Empirical Likelihood Estimation and Related Topics
This article studies maximum empirical likelihood estimation in the case of constraint functions that may be discontinuous and/or depend on additional parameters. The later is the case in applications to semiparametric models where the constraint functions may depend on the nuisance parameter. Our results are thus formulated for empirical likelihoods based on estimated constraint functions that...
متن کاملEMPIRICAL TIME SERIES ANALYSIS and MAXIMUM LIKELIHOOD ESTIMATION
Maximum likelihood (ML) estimation maximizes the likelihood function and is a celebrated principle in linear regression analysis. Asymptotically, the Cramér-Rao lower bound for the covariance matrix of unbiased estimated parameters is reached by the maximum likelihood estimator. With asymptotic arguments, it has been proved that this principle can also be applied to autoregression and to the mo...
متن کاملEmpirical Risk Minimization Versus Maximum-Likelihood Estimation: a Case Study
We study the interaction between input distributions, learning algorithms and nite sample sizes in the case of learning classiication tasks. Focusing on the case of normal input distributions, we use statistical mechanics techniques to calculate the empirical and expected (or generalization) errors for several well-known algorithms learning the weights of a single-layer perceptron. In the case ...
متن کاملGeneral Maximum Likelihood Empirical Bayes Estimation of Normal Means
We propose a general maximum likelihood empirical Bayes (GMLEB) method for the estimation of a mean vector based on observations with iid normal errors. We prove that under mild moment conditions on the means, the average mean squared error (MSE) of the GMLEB is within an infinitesimal fraction of the minimum average MSE among all separable estimators which use a single deterministic estimating...
متن کاملMaximum Likelihood Estimation and Likelihood-ratio Tests
The method of maximum likelihood (ML), introduced by Fisher (1921), is widely used in human and quantitative genetics and we draw upon this approach throughout the book, especially in Chapters 13–16 (mixture distributions) and 26–27 (variance component estimation). Weir (1996) gives a useful introduction with genetic applications, while Kendall and Stuart (1979) and Edwards (1992) provide more ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2018
ISSN: 1935-7524
DOI: 10.1214/18-ejs1471