Maximum likelihood estimation of hidden Markov processes
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Estimation of Hidden Markov Processes
We consider the process dYt = utdt + dWt; where u is a process not necessarily adapted to FY (the ...ltration generated by the process Y ) and W is a Brownian Motion. We obtain a general representation for the likelihood ratio of the law of the Y process relative to Brownian measure. This representation involves only one basic ...lter (expectation of u conditional on observed process Y ): This ...
متن کاملMaximum Likelihood Estimation of Hidden Markov Processes by Halina Frydman
New York University We consider the process dYt = ut dt + dWt , where u is a process not necessarily adapted to F Y (the filtration generated by the process Y) and W is a Brownian motion. We obtain a general representation for the likelihood ratio of the law of the Y process relative to Brownian measure. This representation involves only one basic filter (expectation of u conditional on observe...
متن کاملMaximum-likelihood estimation for hidden Markov models
Hidden Markov models assume a sequence of random variables to be conditionally independent given a sequence of state variables which forms a Markov chain. Maximum-likelihood estimation for these models can be performed using the EM algorithm. In this paper the consistency of a sequence of maximum-likelihood estimators is proved. Also, the conclusion of the Shannon-McMillan-Breiman theorem on en...
متن کاملAnalysis of the Maximum-Likelihood Estimation of Hidden Markov Models
The estimation of Hidden Markov Models has attracted a lot of attention recently, see results of Legland and Mevel (2000) and Leroux (1992). The purpose of this paper is to give a view for the analysis of the maximumlikelihood estimation of HMM-s. General consistency results are compared to the new approach. The new approach is potentially useful for deriving strong approximation results, which...
متن کاملEstimation of Hidden Markov Models with Nonparametric Simulated Maximum Likelihood
We propose a nonparametric simulated maximum likelihood estimation (NPSMLE) with built-in nonlinear ltering. By recursively approximating the unknown conditional densities, our method enables a maximum likelihood estimation of general dynamic models with latent variables including time-inhomogeneous and non-stationary processes. We establish the asymptotic properties of the NPSMLEs for hidden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Probability
سال: 2003
ISSN: 1050-5164
DOI: 10.1214/aoap/1069786500