Maximum Likelihood Estimation of the I(2) Model under Linear Restrictions
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملMaximum Likelihood Estimation of the I(2) Model under Linear Restrictions
Estimation of the I(2) cointegrated vector autoregressive (CVAR) model is considered. Without further restrictions, estimation of the I(1) model is by reduced-rank regression (Anderson (1951)). Maximum likelihood estimation of I(2) models, on the other hand, always requires iteration. This paper presents a new triangular representation of the I(2) model. This is the basis for a new estimation p...
متن کاملRobust maximum likelihood estimation in the linear model
This paper addresses the problem of maximum likelihood parameter estimation in linear models a!ected by Gaussian noise, whose mean and covariance matrix are uncertain. The proposed estimate maximizes a lower bound on the worst-case (with respect to the uncertainty) likelihood of the measured sample, and is computed solving a semide"nite optimization problem (SDP). The problem of linear robust e...
متن کاملConditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملPower Spectrum Estimation II. Linear Maximum Likelihood
This second paper of two companion papers on the estimation of power spectra specializes to the topic of estimating galaxy power spectra at large, linear scales using maximum likelihood methods. As in the first paper, the aims are pedagogical, and the emphasis is on concepts rather than technical detail. The paper covers most of the salient issues, including selection functions, likelihood func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometrics
سال: 2017
ISSN: 2225-1146
DOI: 10.3390/econometrics5020019