Maximum Likelihood Estimations and EM Algorithms With Length-Biased Data
نویسندگان
چکیده
منابع مشابه
Semiparametric Maximum Likelihood Inference for Truncated or Biased-sampling Data
Sample selection bias has long been recognized in many fields including clinical trials, epidemiology studies, genome-wide association studies, and wildlife management. This paper investigates the maximum likelihood estimation for censored survival data with selection bias under the Cox regression models where the selection process is modeled parametrically. A novel expectation-maximization alg...
متن کاملMaximum likelihood estimation from fuzzy data using the EM algorithm
A method is proposed for estimating the parameters in a parametric statistical model when the observations are fuzzy and are assumed to be related to underlying crisp realizations of a random sample. This method is based on maximizing the observeddata likelihood defined as the probability of the fuzzy data. It is shown that the EM algorithm may be used for that purpose, which makes it possible ...
متن کاملAlgorithms of maximum likelihood data clustering with applications
We address the problem of data clustering by introducing an unsupervised, parameter free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson’s coefficient of the data...
متن کاملBayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملMaximum likelihood joint channel and data estimation using genetic algorithms
A batch blind equalization scheme is developed based on maximum likelihood joint channel and data estimation. In this scheme, the joint maximum likelihood optimization is decomposed into a twolevel optimization loop. A micro genetic algorithm is employed at the upper level to identify the unknown channel model, and the Viterbi algorithm is used at the lower level to provide the maximum likeliho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2011
ISSN: 0162-1459,1537-274X
DOI: 10.1198/jasa.2011.tm10156