Mean approximation of functions by algebraic polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPROXIMATION OF 3D-PARAMETRIC FUNCTIONS BY BICUBIC B-SPLINE FUNCTIONS

In this paper we propose a method to approximate a parametric 3 D-function by bicubic B-spline functions

متن کامل

Uniform and Pointwise Shape Preserving Approximation by Algebraic Polynomials

We survey developments, over the last thirty years, in the theory of Shape Preserving Approximation (SPA) by algebraic polynomials on a finite interval. In this article, “shape” refers to (finitely many changes of) monotonicity, convexity, or q-monotonicity of a function. It is rather well known that it is possible to approximate a function by algebraic polynomials that preserve its shape (i.e....

متن کامل

Approximation of Continuous Functions by Means of Lacunary Polynomials

be the orthonormal trigonometric sums on Di for weight p(6)cr(0) ; if the u's and v's are uniformly bounded on a point set D2 contained in Di, the same is true of the U's and Vs. For this case the proof admits a materially simpler formulation than when geometric configurations are contemplated having the degree of generality previously considered. The details relating to the loci C', C", K, K',...

متن کامل

Approximation of Gaussian by Scaling Functions and Biorthogonal Scaling Polynomials

The derivatives of the Gaussian function, G(x) = 1 √ 2π e−x 2/2, produce the Hermite polynomials by the relation, (−1)mG(m)(x) = Hm(x)G(x), m = 0, 1, . . . , where Hm(x) are Hermite polynomials of degree m. The orthonormal property of the Hermite polynomials, 1 m! ∫∞ −∞Hm(x)Hn(x)G(x)dx = δmn, can be considered as a biorthogonal relation between the derivatives of the Gaussian, {(−1)nG(n) : n = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Researches in Mathematics

سال: 2012

ISSN: 2664-5009,2664-4991

DOI: 10.15421/241215