Measured and simulated performance of a ceramic micromechanical beam steering device at 94 GHz
نویسندگان
چکیده
منابع مشابه
A micromechanical beam-steering device for terahertz systems
Beam-steering techniques are required to fully exploit terahertz imaging systems. We propose and model a device employing artificial dielectric techniques to provide a variable phase-control medium. The device consists of two interlocking artificial dielectric surfaces that are initially aligned parallel to each other. By mechanically introducing a relative tilt between the plates, a transmitte...
متن کاملRadar backscattering properties of nonspherical ice crystals at 94 GHz
[1] The millimeter wavelength radar backscattering properties at 94 GHz for six nonspherical ice crystals, which include hexagonal column, hollow, plate, bullet rosette, aggregate, and droxtal with 46 maximum dimensions ranging from 2 to 10,500 mm, are investigated using the discrete dipole approximation (DDA) method and Lorenz-Mie theory. It is found that the radar backscattering cross section...
متن کاملForce detected electron spin resonance at 94 GHz.
Force detected electron spin resonance (FDESR) detects the presence of unpaired electrons in a sample by measuring the change in force on a mechanical resonator as the magnetization of the sample is modulated under magnetic resonance conditions. The magnetization is coupled to the resonator via a magnetic field gradient. It has been used to both detect and image distributions of electron spins,...
متن کاملDesign and Simulation of a Clamped-Clamped Micromechanical Beam AM Frequency Mixer-Filter
In the last decade Micromechanical components for communication applications has been fabricated via IC-compatible MEMS technologies. In fact, its most important impact is not at the component level, but rather at the system level, by offering alternative transceiver architectures that reduce power consumption and enhance performance. In this paper a mixer-filter for AM frequency receiver with ...
متن کاملNoise Performance of a Cryogenically Cooled 94 GHz InP MMIC Amplifier and Radiometer
We have developed an ultra-low noise 94 GHz MMIC amplifier using InGaAsfInAlAsfInP transistor technology. The MMIC designs incorporate a single transistor stage with input and output matching networks as well as gate and drain bias networks. Two MMICs have been incorporated into a single housing providing 10 dB of gain. At room temperature, the integrated amplifier has a measured noise of 365 K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Optics
سال: 2008
ISSN: 0003-6935,1539-4522
DOI: 10.1364/ao.47.002382