Measuring the magnitude of sums of independent random variables

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring the magnitude of sums of independent random variables

This paper considers how to measure the magnitude of the sum of independent random variables in several ways. We give a formula for the tail distribution for sequences that satisfy the so called Lévy property. We then give a connection between the tail distribution and the pth moment, and between the pth moment and the rearrangement invariant norms.

متن کامل

9 S ep 1 99 9 Measuring the magnitude of sums of independent random variables

This paper considers how to measure the magnitude of the sum of independent random variables in several ways. We give a formula for the tail distribution for sequences that satisfy the so called Lèvy property. We then give a connection between the tail distribution and the pth moment, and between the pth moment and the rearrangement invariant norms.

متن کامل

Estimating Sums of Independent Random Variables

The paper deals with a problem proposed by Uriel Feige in 2005: if X1, . . . , Xn is a set of independent nonnegative random variables with expectations equal to 1, is it true that P ( ∑n i=1 Xi < n + 1) > 1 e ? He proved that P ( ∑n i=1Xi < n + 1) > 1 13 . In this paper we prove that infimum of the P ( ∑n i=1Xi < n + 1) can be achieved when all random variables have only two possible values, a...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

On the Number of Positive Sums of Independent Random Variables

2 . The invariance principle . We first prove the following : If the theorem can be established for one particular sequence of independent random variables Y1, Y2, . . . satisfying the conditions of the theorem then the conclusion of the theorem holds for all sequences of independent random variables which satisfy the conditions of the theorem . In other words, if the limiting distribution exis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2001

ISSN: 0091-1798

DOI: 10.1214/aop/1008956339